USGS - science for a changing world

U.S. Geological Survey - Great Lakes Science Center

Publications

  • Martin A. Stapanian, Karen Rodriguez, Timothy E. Lewis, Louis Blume, Craig J. Palmer, Lynn Walters, Judith Schofield, Molly M. Amos, and Adam Bucher 2028 Announcement-guidance document for acquiring reliable data in ecological restoration projects. John Wiley & Sons . Restoration Ecology 24 (5). pp. 570-572.

    The Laurentian Great Lakes are undergoing intensive ecological restoration in Canada and the United States. In the United States, an interagency committee was formed to facilitate implementation of quality practices for federally funded restoration projects in the Great Lakes basin. The Committee's responsibilities include developing a guidance document that will provide a common approach to the application of quality assurance and quality control (QA/QC) practices for restoration projects. The document will serve as a “how-to” guide for ensuring data quality during each aspect of ecological restoration projects. In addition, the document will provide suggestions on linking QA/QC data with the routine project data and hints on creating detailed supporting documentation. Finally, the document will advocate integrating all components of the project, including QA/QC applications, into an overarching decision-support framework. The guidance document is expected to be released by the U.S. EPA Great Lakes National Program Office in 2017.

    Contribution #2028
  • Robin L. DeBruyne, David G. Fielder, Edward F. Roseman, Peter H. Butchko 2017 Exploring potential effects of cormorant predation on the fish community in Saginaw Bay, Lake Huron. Elsevier . Journal of Great Lakes Research

    Stakeholders and fishery managers expressed concern that double-crested cormorant Phalacrocorax auritus predation may be a factor in the recent poor survival of yellow perch Perca flavescens in Saginaw Bay. We quantified cormorant diets from two nesting colonies in Saginaw Bay during April–September in 2013 and 2014, with special emphasis on impacts to yellow perch. Cormorants (n = 691) were collected when returning to colonies after foraging. Stomachs were removed and preserved in the field. Diet items were identified, enumerated, and measured (n = 23,373). Cormorant diets from Saginaw Bay indicate a heavy reliance on round goby and Notropis species as prey during the breeding season, consistent with other areas of the Great Lakes where round goby and cormorants coincide. Respectively, the three most common prey species observed by number (%) and biomass (%) pooled across years and sites were round goby Neogobius melanostomus (56.6%, 42.1%), emerald shiner Notropis antherinoides (25.2%, 12.5%), and yellow perch (8.0%, 14.1%). Diet composition was more variable at Spoils Island than at Little Charity Island. Overall cormorant consumption (estimated using cormorant consumption demand rates) of yellow perch was compared to walleye consumption. Cormorant consumption of age-1 yellow perch was 13–17% as much as mean walleye consumption of yellow perch in 2013 and 8–11% in 2014. The cumulative effects of walleye and spring cormorant predation likely represent a recruitment bottleneck for yellow perch in Saginaw Bay. Future studies determining age-specific abundance of yellow perch would facilitate better determination of cormorant predation significance.

    Contribution #2102
  • P. Tsogtsaikhan, B. Mendsaikhan, G. Jargalmaa, B. Ganzorig, B. C. Weidel, C. M. Filosa, C. M. Free, T. Young, and O. P. Jensen 2017 Age and growth comparisons of Hovsgol grayling (Thymallus nigrescens Dorogostaisky, 1923), Baikal grayling (T. baicalensis Dybowski, 1874), and lenok (Brachymystax lenok Pallas, 1773) in lentic and lotic habitats of Northern Mongolia. John Wiley & Sons . Journal of Applied Ichthyology 33 (1). pp. 108-115.

    Despite concern over the conservation status of many Mongolian salmonids and the importance of their ecological role in Mongolia's aquatic ecosystems, little is known about their basic biology. Hovsgol grayling (Thymallus nigrescens) is endemic to Lake Hovsgol, Mongolia and listed as endangered on the Mongolian Red List. Baikal grayling (T. baicalensis) and lenok (Brachymystax lenok) are found in lakes and rivers throughout the Selenge drainage. A detailed study of the age and growth of these three salmonids was conducted based on 1,682 samples collected from July 2006 to July 2013 in Lake Hovsgol, its outlet the Eg River, and one of the Eg's largest tributaries, the Uur River. Our results suggest that Hovsgol grayling in particular can reach a much older maximum age (17 years in our samples) than previously believed based on aging from scales. Female Hovsgol grayling were heavier at a given length than their male counterparts. Lenok had a greater average length-at-age in Lake Hovsgol compared to the rivers and greater weight-at-length in the warmer Uur River than in the Eg; female lenok from the rivers had a greater average length-at-age than their male counterparts. This study provides critical new information for the management and conservation of these threatened salmonid species in Mongolia.

    Contribution #2101
  • James H. Johnson, Marc A. Chalupnicki, Ross Abbett, Avriel R. Diaz, and Chris Nack 2017 Comparative Diel Feeding Ecology of Brook Silverside, Golden Shiner, and Subyearling Pumpkinseed in a Lake Ontario Embayment During Summer. Scientific Journals . Journal of Fish and Wildlife Management

    Fish feeding ecology has been shown to vary over a 24-h period in terms of the prey consumed and feeding intensity. Consequently, in order to best determine the interspecific feeding associations within a fish community, examination of the diet at multiple times over a 24-h period is often necessary. We examined the diel feeding ecology of three fish species that were numerically dominant in a Lake Ontario embayment during summer. The diet of each of the three species, subyearling pumpkinseed Lepomis gibbosus, golden shiner Notemigonus crysoleucus, and brook silverside Labidesthes sicculus, was distinct with no significant overlap in diet composition occurring within any of the 4-h time intervals. The diet composition of each species suggested that brook silverside were feeding at the surface (terrestrial invertebrates and aquatic surface dwelling hemipterans) whereas subyearling pumpkinseed (amphipods) and golden shiner (tipulids) were feeding on different benthic prey. Differences in feeding periodicity were most pronounced for subyearling pumpkinseed. Our findings provide valuable insights on interspecific feeding associations among these three fish species during summer in a Lake Ontario embayment.

    Contribution #2100
  • Patricia M. Armenio, David B. Bunnell, Jean V. Adams, Nicole M. Watson, and Whitney Woelmer 2017 It's like night and day: Diel net-effects on Cercopagidae densities in the Laurentian Great Lakes. Elsevier . Journal of Great Lakes Research

    In the Laurentian Great Lakes, zooplankters are often sampled using standard ≤ 153 μm mesh nets without regard to the time of day they are collected. We sampled Cercopagidae during 2013–2014 in northern Lake Huron during day, dusk, and night using two different nets (a 0.5 m wide 153 μm mesh “standard” net and a 0.75 m wide 285 μm mesh “Bythotrephes” net) to determine if there were any differences in their sampled densities. Bythotrephes densities with the standard net were approximately 2.07-fold greater when captured at night than during the day. No time of day bias occurred with the Bythotrephes net. Nighttime Bythotrephes densities did not differ between the two net types. Cercopagis densities did not vary with net type or the time of day in this study, but future work should revisit this result given our low sample size and the low occurrence of Cercopagis in Lake Huron. To reduce bias and calculate accurate density estimates, Cercopagidae should be sampled at night if using a standard net or any time of day with the Bythotrephes net. Given the large impact of invasive predatory cladocerans Bythotrephes longimanus and Cercopagis pengoi on food webs since their invasion in the Laurentian Great Lakes in the 1980s, proper estimation of their densities is essential.

    Contribution #2099
  • James F. White, Kathryn I. Kingsley, Kurt P. Kowalski, Ivelisse Irizarry, April Micci, Marcos A. Soares, and Marshall S. Bergen 2017 Disease protection and allelopathic interactions of seed-transmitted endophytic pseudomonads of invasive reed grass (Phragmites australis). Springer . Plant and Soil
    Background and aimsNon-native Phragmites australis (haplotype M) is an invasive grass that decreases biodiversity and produces dense stands. We hypothesized that seeds of Phragmites carry microbes that improve seedling growth, defend against pathogens and maximize capacity of seedlings to compete with other plants.
    Methods

    We isolated bacteria from seeds of Phragmites, then evaluated representatives for their capacities to become intracellular in root cells, and their effects on: 1.) germination rates and seedling growth, 2.) susceptibility to damping-off disease, and 3.) mortality and growth of competitor plant seedlings (dandelion (Taraxacum officionale F. H. Wigg) and curly dock (Rumex crispus L.)).

    Results

    Ten strains (of 23 total) were identified and characterized; seven were identified as Pseudomonas spp. Strains Sandy LB4 (Pseudomonas fluorescens) and West 9 (Pseudomonas sp.) entered root meristems and became intracellular. These bacteria improved seed germination in Phragmites and increased seedling root branching in Poa annua. They increased plant growth and protected plants from damping off disease. Sandy LB4 increased mortality and reduced growth rates in seedlings of dandelion and curly dock.

    Conclusions

    Phragmites plants associate with endophytes to increase growth and disease resistance, and release bacteria into the soil to create an environment that is favorable to their seedlings and less favorable to competitor plants.

     

    Contribution #2098
  • Mark R. DuFour, Christine M. Mayer, Patrick M. Kocovsky, Song S. Qian, Dave M. Warner, Richard T. Kraus, and Christopher S. Vandergoot 2017 Sparse targets in hydroacoustic surveys: Balancing quantity and quality of in situ target strength data. Elsevier . Fisheries Research pp. 173-182.

    Hydroacoustic sampling of low-density fish in shallow water can lead to low sample sizes of naturally variable target strength (TS) estimates, resulting in both sparse and variable data. Increasing maximum beam compensation (BC) beyond conventional values (i.e., 3 dB beam width) can recover more targets during data analysis; however, data quality decreases near the acoustic beam edges. We identified the optimal balance between data quantity and quality with increasing BC using a standard sphere calibration, and we quantified the effect of BC on fish track variability, size structure, and density estimates of Lake Erie walleye (Sander vitreus). Standard sphere mean TS estimates were consistent with theoretical values (−39.6 dB) up to 18-dB BC, while estimates decreased at greater BC values. Natural sources (i.e., residual and mean TS) dominated total fish track variation, while contributions from measurement related error (i.e., number of single echo detections (SEDs) and BC) were proportionally low. Increasing BC led to more fish encounters and SEDs per fish, while stability in size structure and density were observed at intermediate values (e.g., 18 dB). Detection of medium to large fish (i.e., age-2+ walleye) benefited most from increasing BC, as proportional changes in size structure and density were greatest in these size categories. Therefore, when TS data are sparse and variable, increasing BC to an optimal value (here 18 dB) will maximize the TS data quantity while limiting lower-quality data near the beam edges.

    Contribution #2097
  • Patricia A. Thompson, Edward F. Roseman, Kevin M. Keeler, Timothy P. O’Brien, and Dustin A. Bowser 2017 Continued feeding on Diporeia by deepwater sculpin in Lake Huron. Springer . Environmental Biology of Fishes

    Monitoring changes in diets of fish is essential to understanding how food web dynamics respond to changes in native prey abundances. In the Great Lakes, Diporeia, a benthic macroinvertebrate and primary food of native benthivores, declined following the introduction of invasive Dreissena mussels and these changes were reflected in fish diets. We examined the diets of deepwater sculpin Myoxocephalus thompsonii collected in bottom trawls during 2010–2014 in the main basin of Lake Huron, and compared these results to an earlier diet study (2003–2005) to assess if their diets have continued to change after a prolonged period of Dreissena mussel invasion and declined Diporeia densities. Diporeia, Mysis, Bythotrephes, and Chironomidae were consumed regularly and other diet items included ostracods, copepods, sphaerid clams, and fish eggs. The prey-specific index of relative importance calculated for each prey group indicated that Mysis importance increased at shallow (≤55 m) and mid (64–73 m) depths, while Diporeia importance increased offshore (≥82 m). The average number of Diporeia consumed per fish increased by 10.0% and Mysis decreased by 7.5%, while the frequency of occurrence of Diporeia and Mysis remained comparable between time periods. The weight of adult deepwater sculpin (80 mm and 100 mm TL bins) increased between time periods; however, the change in weight was only significant for the 80 mm TL group (p < 0.01). Given the historical importance of Diporeia in the Great Lakes, the examination of deepwater sculpin diets provides unique insight into the trophic dynamics of the benthic community in Lake Huron.

    Contribution #2095
  • Chan Lan Chuna, Julie R. Peller, Dawn Shively, Muruleedhara N. Byappanahalli, Richard L. Whitman, Christopher Staley, Qian Zhang, Satoshi Ishii, and Michael J. Sadowsky 2017 Virulence and biodegradation potential of dynamic microbial communities associated with decaying Cladophora in Great Lakes. Elsevier . Science of the Total Environment 574 pp. 872-880.

    Cladophora mats that accumulate and decompose along shorelines of the Great Lakes create potential threats to the health of humans and wildlife. The decaying algae create a low oxygen and redox potential environment favoring growth and persistence of anaerobic microbial populations, including Clostridium botulinum, the causal agent of botulism in humans, birds, and other wildlife. In addition to the diverse population of microbes, a dynamic chemical environment is generated, which involves production of numerous organic and inorganic substances, many of which are believed to be toxic to the sand and aquatic biotic communities. In this study, we used 16S-rDNA-based-amplicon sequencing and microfluidic-based quantitative PCR approaches to characterize the bacterial community structure and the abundances of human pathogens associated with Cladophora at different stages (up to 90 days) of algal decay in laboratory microcosms. Oxygen levels were largely depleted after a few hours of incubation. As Cladophora decayed, the algal microbial biodiversity decreased within 24 h, and the mat transitioned from an aerobic to anaerobic environment. There were increasing abundances of enteric and pathogenic bacteria during decomposition of Cladophora, including Acinetobacter, Enterobacter, Kluyvera, Cedecea, and others. In contrast, there were no or very few sequences (< 0.07%) assigned to such groups in fresh Cladophora samples. Principal coordinate analysis indicated that the bacterial community structure was dynamic and changed significantly with decay time. Knowledge of microbial communities and chemical composition of decaying algal mats is critical to our further understanding of the role that Cladophora plays in a beach ecosystem's structure and function, including the algal role in trophic interactions. Based on these findings, public and environmental health concerns should be considered when decaying Cladophora mats accumulate Great Lakes shorelines.

    Contribution #2089
  • Rebecca L. Eberts, Björn Wissel, Gavin L. Simpson, Stephen S. Crawford, Wendylee Stott, Robert H. Hanner, Richard G. Manzon, Joanna Y. Wilson, Douglas R. Boreham, and Christopher M. Somers 2017 Isotopic structure of Lake Whitefish in Lake Huron: Evidence for regional and local populations based on resource use. Taylor & Francis . North American Journal of Fisheries Management 37 (1). pp. 133-148.

    Lake Whitefish Coregonus clupeaformis is the most commercially valuable species in Lake Huron. The fishery for this species has historically been managed based on 25 management units (17 in Canada, 8 in the USA). However, congruence between the contemporary population structure of Lake Whitefish and management units is poorly understood. We used stable isotopes of carbon (d13C) and nitrogen (d15N), food web markers that reflect patterns in resource use (i.e., prey, location, habitat), to assess the population structure of spawning-phase Lake Whitefish collected from 32 sites (1,474 fish) across Lake Huron. We found large isotopic variation among fish from different sites (ranges: d13C = 10.2‰, d15N = 5.5‰) and variable niche size and levels of overlap (standard ellipse area = 1.0–4.3‰2). Lake Huron contained spawning-phase fish from four major isotopic clusters largely defined by extensive variation in d13C, and the isotopic composition of fish sampled was spatially structured both within and between lake basins. Based on cluster compositions, we identified six putative regional groups, some of which represented sites of high diversity (three to four clusters) and others with less (one to two clusters). Analysis of isotopic values from Lake Whitefish collected from summer feeding locations and baseline prey items showed similar isotopic variation and established spatial linkage between spawning-phase and summer fish. Our results show that summer feeding location contributes strongly to the isotopic structure we observed in spawning-phase fish. One of the regional groups we identified in northern Georgian Bay is highly distinct based on isotopic composition and possibly ecologically unique within Lake Huron. Our findings are congruent with several previous studies using different markers (genetics, mark–recapture), and we conclude that current management units are generally too small and numerous to reflect the population structure of Lake Whitefish in Lake Huron.

    Contribution #2073

Pages

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: https://www.glsc.usgs.gov/publications
Page Contact Information: GLSC Webmaster
Page Last Modified: Thursday December 15, 2016