USGS - science for a changing world

U.S. Geological Survey - Great Lakes Science Center

Wendylee Stott


Research Fishery Biologist Great Lakes Science Center Email: Phone: (734) 214-7242 Fax: (734) 994-8780 Professional Page:


BSc. (Molecular Biology and Genetics), University of Guelph, Guelph, Ontario, 1989
MSc. University of Guelph, Guleph, Ontario, 1991
PhD. McMaster University, Hamilton, Ontario, 1998

Current Studies

Origins of Lake Whitefish Populations from the Detroit River

Lake whitefish are one of many fish species that have declined in the Great Lakes region, although populations in Lake Erie have partially recovered and there is a robust commercial fishery in Lake Huron (Chiarappa 2005). Habitat degradation, overfishing, and competition with exotic species are just some of the reasons why populations declined (Chiarappa 2005). Since 1925 there have been very few reports of lake whitefish in the Detroit River. In 2005 and 2006, the first whitefish catches were reported in the Detroit River. Viable eggs and a male in spawning condition were collected in the fall of 2005 and larvae were collected in the spring of 2006. The exact location of the spawning grounds is unknown and further research is required to determine the location of the spawning grounds and estimate the size of any spawning populations (Roseman et al. 2007). Further research is also required to determine if these contemporary lake whitefish are a remnant of stocks that once existed in the Detroit River or if they are fish that had migrated into the river from Lake Erie or possibly Lake Huron. Whitefish may have migrated between Lake Erie and the Detroit River before the collapse of the fishery (Milner 1874) and walleye have been shown to move along this corridor (Todd and Haas 1993). Genetic data could be used to test this hypothesis and also to characterize the whitefish populations now in the Detroit River.

Principal Investigator: Wendylee Stott
Natural Lake Trout Strain Identification in Lake Huron

Lake trout were extirpated from the Great Lakes as a result of habitat alteration, commercial over-harvest, and sea lamprey predation (e.g., Brown et al. 1981; Goodier 1981). Considerable financial commitments have been made to restore lake trout to the Great Lakes by stocking, habitat restoration, and sea lamprey control. Today, lake trout rehabilitation is still one of the primary goals of restoration and management programs (e.g., (Ebener 1998). Since 1969, over 46.5 million lake trout of various ages and strains have been stocked in all areas of Lake Huron (Ebener 1998). Several hatchery strains of lake trout have been used including: Jenny Lake, Lewis Lake, Marquette, Seneca Lake, Lake Manitou, Slate Is., Michipicoten Is., Parry Sound (Big Sound), and Iroquois Bay. In addition, splake have also been stocked. Although successful natural reproduction of lake trout in the Great Lakes outside of Lake Superior has been limited, reproduction has occurred at six sites in Lake Huron (South Bay, Iroquois Bay, Owen Sound, Parry Sound, Six Fathom Bank and Thunder Bay). Knowing the origin of naturally produced fish in Lake Huron will provide valuable direction for management efforts. For example, the information can be used to ensure that future stocking of unsuccessful strains, which could limit any of the success already achieved, does not continue. A variety of microsatellite DNA markers have been developed for salmonid species and recent research projects have characterized microsatellite DNA variation in the majority of lake trout hatchery strains stocked into the Great Lakes (e.g., Stott 1998; Page 2001). Therefore, the required data are available to assess the contribution of different lake trout strains to successful natural reproduction in Lake Huron.

Principal Investigator: Wendylee Stott
Development of a SNP Library for the Genus Sander and Preliminary Genetic Analysis of Walleye and Blue Pike from Lake Erie

Before their collapse between 1950 and 1970, members of the genus Sander (walleye, blue pike, and sauger) from Lake Erie supported a world-class fishery. Blue pike was considered extinct in the U.S. in 1983 and in Canada in 1985, yet reports of the species in both the U.S. and Canada continue to surface. Although now they are considered to be sub-species of Sander vitreum, questions remain about the taxonomic status of blue pike and walleye that have been difficult to address with genetic techniques due to the scarcity of samples of blue pike that yield DNA of sufficient quality. The changes in the Sander populations of Lake Erie are well documented in scale collections housed at the Great Lakes Science Center that were identified by experts such as H.J. Deason and J. VanOosten. These scales provide an opportunity to collect genetic data to examine taxonomic and population genetic relationships between sub-species.

Principal Investigator: Wendylee Stott
Genetic Population Structure of Lake Whitefish in Lake Huron

Coregonids are an important native species in historical and present day fisheries in the Great Lakes. They are a forage species for top predators and as such, play an important role in the trophic transfer of energy. While most coregonid populations in the Great Lakes have been greatly depleted from historical levels, lake whitefish (Coregonus clupeaformis) populations have increased in Lake Huron during the late 1900s, possibly as a consequence of the restoration of top predators. However, recent declines in biomass and condition of lake whitefish (particularly in the main basin) have raised concerns about the overall health of the resource. The Great Lakes Fishery Commission's Lake Huron committee has embraced an ecosystem approach to management. This approach recognizes that diversity among fish stocks is important to the diversity of the fish community as a whole. Management actions should strive to maintain genetic diversity by recognizing stocks and protecting them as needed. A first step in this process is to delineate stock boundaries. Lake whitefish are currently managed as 33 stocks (8 in Michigan waters and 25 in Ontario waters). However, little genetic information exists to support these stock designations. Previous genetic studies sampled the northern of portions lakes Huron and a few sites in lakes in Superior and Ontario and there is a recent more comprehensive study of Lake Michigan, but little is known about the genetic diversity and stock structure of main basin and major spawning grounds on Lake Huron. Therefore, we propose to analyze lake-wide stock structure by analyzing microsatellite DNA variation of lake whitefish in Lake Huron. We will test the null hypothesis that lake whitefish in Lake Huron exist as a single population. Secondary hypotheses will test correspondence of the observed genetic structure with existing stock designations and the results of an ongoing tagging study. Results of this study will provide information that is required for scientifically sound management and will help with the continued resurgence of lake whitefish in Lake Huron. Comparisons with data from other studies will also provide insight into the evolution of coregonids in North America.

Principal Investigator: Wendylee Stott
Genetic Analysis of Sauger and Walleye from the Ohio River

The Ohio Division of Wildlife is interested in evaluating the genetic "purity" of Ohio River strain walleye. To accomplish this, we wish to compare contemporary Ohio River strain walleye to historical Ohio River strain walleye and Great Lakes walleye, with the expectations that, if little or no introgression has occurred, the genetics of contemporary Ohio River strain walleye should more closely resemble historical Ohio River strain walleye than Great Lakes walleye. This objective will require the use of both mtDNA and microsatellite analyses on both historical and contemporary samples. The laboratory will use mitochondrial DNA to separate walleye into two groups: 1) Great Lakes strain and 2) Ohio River strain. Protocols and expected haplotypes for delineating Great Lakes strain and Ohio River strain walleye can be found in White et al. (2005). Upon identification of samples by strain, microsatellite genetic markers will be employed on the historical and contemporary Ohio River strain walleye. The genetic diversity of historical and contemporary Ohio River strain walleye will be subsequently compared to the genetic diversity of Lake Erie walleye. Only Ohio River strain walleye and the walleye from Lake Erie will be evaluated using existing microsatellite markers. Ohio River strain walleye and rare within the Ohio River and it will likely require several years of sampling to collect enough samples for a reliable analysis. The primary goal of the sauger work is to evaluate the genetic suitability of sauger populations within the Ohio River and Great Lakes Basins for reintroduction into Lake Erie. To accomplish this, microsatellite markers will be used to compare historical Lake Erie sauger samples to extant wild populations.

Principal Investigator: Wendylee Stott

Recent Publications

Rebecca L. Eberts, Björn Wissel, Gavin L. Simpson, Stephen S. Crawford, Wendylee Stott, Robert H. Hanner, Richard G. Manzon, Joanna Y. Wilson, Douglas R. Boreham, and Christopher M. Somers 2017. Isotopic structure of Lake Whitefish in Lake Huron: Evidence for regional and local populations based on resource use. Taylor & Francis . North American Journal of Fisheries Management . 37 (1). 133-148.
Contribution #2073
Morrison, Cheryl, Dolly K. Coykendall, Wendy Stott, Marcus J. Springmann 2014. Development of eighteen microsatellite loci in walleye (Sander vitreus). Springer . Conservation Genetics Resources . 6 (4). 1019-1021.
Contribution #1870
Leonard, Jill B. K., Stott, Wendylee, Loope, Delora M., Kusnierz, Paul C., and Ashwin Sreenivasan. 2013. Biological consequences of the coaster brook trout restoration stocking program in Lake Superior tributaries within Pictured Rocks National Lakeshore. North American Journal of Fisheries Management . 33 (2). 359-372.
Contribution #1723
Mychek-Londer, Justin G., Bunnell, David B., Stott, Wendylee, Diana, James S., French, John R.P. III, and Margret A. Chriscinske. 2013. Using diets to reveal overlap and egg predation among benthivorous fishes in Lake Michigan. Transactions of the American Fisheries Society . 142 (2). 492-504.
Contribution #1730
Stott, Wendylee, Mark P. Ebener, Lloyd Mohr, Travis Hartman, Jim Johnson, Edward F. Roseman. 2013. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie. Advances in Limnology . 64 205-222.
Contribution #1698

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: GLSC Webmaster
Page Last Modified: Thursday December 15, 2016