USGS - science for a changing world

U.S. Geological Survey - Great Lakes Science Center

Publications

  • James H. Johnson, Russell D. McCullough, James F. Farquhar, and Irene Mazzocchi 2015 Little Galloo Island, Lake Ontario: Two decades of studies on the diet, fish consumption, and management of double-crested cormorants. Elsevier . Journal of Great Lakes Research

    The double-crested cormorant (Phalacrocorax auritus) colony at Little Galloo Island, Lake Ontario has been a Great Lakes focal point of controversy regarding cormorant–fish interactions for over two decades. We examined cormorant diet and fish consumption at the colony from 1992 to 2013. During this time period, two events, management actions and round goby (Neogobius melanostomus) invasion, occurred that affected the number of fish consumed by cormorants and their diet composition. The purpose of this study was to evaluate the effects of round goby on the feeding ecology of cormorants and evaluate the efficacy of management actions on meeting cormorant population targets at the colony. Round goby first appeared in the diet in 2004 (0.8%) and within one year were the primary prey (29.3%). The presence of round goby in the diet of cormorants: (1) eliminated seasonal variability in diet composition, (2) reversed seasonal trends in the number of fish consumed daily, (3) increased daily fish consumption, and (4) significantly reduced the consumption of other species including yellow perch and smallmouth bass. Management actions, such as egg oiling and culling, were also effective in reducing nesting activity and the number of cormorant feeding days at the Little Galloo Island colony. There is evidence that the combination of management actions and round goby may have allowed some population recovery of yellow perch and smallmouth bass in eastern Lake Ontario.

    Contribution #1933
  • Martin A. Stapanian, Mick Micacchion, and Jean V. Adams 2015 Wetland habitat disturbance best predicts metrics of an amphibian index of biotic integrity. Elsevier . Ecological Indicators 56 pp. 237-242.

    Physical processes can generate spatiotemporal heterogeneity in habitat quality for fish and also influence the overlap of pre-recruit individuals (e.g., larvae) with high-quality habitat through hydrodynamic advection. In turn, individuals from different stocks that are produced in different spawning locations or at different times may experience dissimilar habitat conditions, which can underlie within- and among-stock variability in larval growth and survival. While such physically-mediated variation has been shown to be important in driving intra- and inter-annual patterns in recruitment in marine ecosystems, its role in governing larval advection, growth, survival, and recruitment has received less attention in large lake ecosystems such as the Laurentian Great Lakes. Herein, we used a hydrodynamic model linked to a larval walleye (Sander vitreus) individual-based model to explore how the timing and location of larval walleye emergence from several spawning sites in western Lake Erie (Maumee, Sandusky, and Detroit rivers; Ohio reef complex) can influence advection pathways and mixing among these local spawning populations (stocks), and how spatiotemporal variation in thermal habitat can influence stock-specific larval growth. While basin-wide advection patterns were fairly similar during 2011 and 2012, smaller scale advection patterns and the degree of stock mixing varied both within and between years. Additionally, differences in larval growth were evident among stocks and among cohorts within stocks which were attributed to spatiotemporal differences in water temperature. Using these findings, we discuss the value of linked physical–biological models for understanding the recruitment process and addressing fisheries management problems in the world's Great Lakes.

    Contribution #1931
  • Cory O. Brant, Ke Li, Nicholas S. Johnson, and Weiming Li 2015 A pheromone outweighs temperature in influencing migration of sea lamprey. The Royal Society Publishing . Royal Society Open Science 2 (5). pp. 1-7.

    Organisms continuously acquire and process information from surrounding cues. While some cues complement one another in delivering more reliable information, others may provide conflicting information. How organisms extract and use reliable information from a multitude of cues is largely unknown. We examined movement decisions of sea lampreys (Petromyzon marinus L.) exposed to a conspecific and an environmental cue during pre-spawning migration. Specifically, we predicted that the mature male-released sex pheromone 3-keto petromyzonol sulfate (3kPZS) will outweigh the locomotor inhibiting effects of cold stream temperature (less than 15°C). Using large-scale stream bioassays, we found that 3kPZS elicits an increase (more than 40%) in upstream movement of pre-spawning lampreys when the water temperatures were below 15°C. Both warming temperatures and conspecific cues increase upstream movement when the water temperature rose above 15°C. These patterns define an interaction between abiotic and conspecific cues in modulating animal decision-making, providing an example of the hierarchy of contradictory information.

    Contribution #1929
  • Michael E. Fraker, Eric J. Anderson, Cassandra J. May, Kuan-Yu Chen, Jeremiah J. Davis, Kristen M. DeVanna, Mark R. DuFour, Elizabeth A. Marschall, Christine M. Mayer, Jeffrey G. Miner, Kevin L. Pangle, Jeremy J. Pritt, Edward F. Roseman, Jeffrey T. Tyson, Yingming Zhao, and Stuart A. Ludsin 2015 Stock-specific advection of larval walleye (Sander vitreus in western Lake Erie: Implications for larval growth, mixing, and stock discrimination. Elsevier . Journal of Great Lakes Research

    Physical processes can generate spatiotemporal heterogeneity in habitat quality for fish and also influence the overlap of pre-recruit individuals (e.g., larvae) with high-quality habitat through hydrodynamic advection. In turn, individuals from different stocks that are produced in different spawning locations or at different times may experience dissimilar habitat conditions, which can underlie within- and among-stock variability in larval growth and survival. While such physically-mediated variation has been shown to be important in driving intra- and inter-annual patterns in recruitment in marine ecosystems, its role in governing larval advection, growth, survival, and recruitment has received less attention in large lake ecosystems such as the Laurentian Great Lakes. Herein, we used a hydrodynamic model linked to a larval walleye (Sander vitreus) individual-based model to explore how the timing and location of larval walleye emergence from several spawning sites in western Lake Erie (Maumee, Sandusky, and Detroit rivers; Ohio reef complex) can influence advection pathways and mixing among these local spawning populations (stocks), and how spatiotemporal variation in thermal habitat can influence stock-specific larval growth. While basin-wide advection patterns were fairly similar during 2011 and 2012, smaller scale advection patterns and the degree of stock mixing varied both within and between years. Additionally, differences in larval growth were evident among stocks and among cohorts within stocks which were attributed to spatiotemporal differences in water temperature. Using these findings, we discuss the value of linked physical–biological models for understanding the recruitment process and addressing fisheries management problems in the world's Great Lakes.

    Contribution #1928
  • Yu-Chun Kao, Charles P. Madenjian, David B. Bunnell, Brent M. Lofgren, and Marjorie Perroud 2015 Potential effects of climate change on the growth of fishes from different thermal guilds in Lakes Michigan and Huron. Elsevier . Journal of Great Lakes Research

    We used a bioenergetics modeling approach to investigate potential effects of climate change on the growth of two economically important native fishes: yellow perch (Perca flavescens), a cool-water fish, and lake whitefish (Coregonus clupeaformis), a cold-water fish, in deep and oligotrophic Lakes Michigan and Huron. For assessing potential changes in fish growth, we contrasted simulated fish growth in the projected future climate regime during the period 2043–2070 under different prey availability scenarios with the simulated growth during the baseline (historical reference) period 1964–1993. Results showed that effects of climate change on the growth of these two fishes are jointly controlled by behavioral thermoregulation and prey availability. With the ability of behavioral thermoregulation, temperatures experienced by yellow perch in the projected future climate regime increased more than those experienced by lake whitefish. Thus simulated future growth decreased more for yellow perch than for lake whitefish under scenarios where prey availability remains constant into the future. Under high prey availability scenarios, simulated future growth of these two fishes both increased but yellow perch could not maintain the baseline efficiency of converting prey consumption into body weight. We contended that thermal guild should not be the only factor used to predict effects of climate change on the growth of a fish, and that ecosystem responses to climate change should be also taken into account.

    Contribution #1925
  • Andrew M. Deines, David B. Bunnell, Mark W. Rogers, T. Douglas Beard Jr., and William W. Taylor 2015 A review of the global relationship among freshwater fish, autotrophic activity, and regional climate. Springer . Reviews in Fish Biology and Fisheries

    The relationship between autotrophic activity and freshwater fish populations is an important consideration for ecologists describing trophic structure in aquatic communities, fisheries managers tasked with increasing sustainable fisheries development, and fish farmers seeking to maximize production. Previous studies of the empirical relationships of autotrophic activity and freshwater fish yield have found positive relationships but were limited by small sample sizes, small geographic scopes, and the inability to compare patterns among many types of measurement techniques. Individual studies and reviews have also lacked consistent consideration of regional climate factors which may inform relationships between fisheries and autotrophic activity. We compiled data from over 700 freshwater systems worldwide and used meta-analysis and linear models to develop a comprehensive global synthesis between multiple metrics of autotrophic activity, fisheries, and climate indicators. Our results demonstrate that multiple metrics of fish (i.e., catch per unit effort, yield, and production) increase with autotrophic activity across a variety of fisheries. At the global scale additional variation in this positive relationship can be ascribed to regional climate differences (i.e., temperature and precipitation) across systems. Our results provide a method and proof-of-concept for assessing inland fisheries production at the global scale, where current estimates are highly uncertain, and may therefore inform the continued sustainable use of global inland fishery resources.

    Contribution #1924
  • Frederick M. Soster, Gerald Matisoff, Donald W. Schloesser, and William J. Edwards 2015 Potential impact of Chironomus plumosus larvae on hypolimnetic oxygen in the central basin of Lake Erie. Elsevier . Journal of Great Lakes Research

    Previous studies have indicated that burrow-irrigating infauna can increase sediment oxygen demand (SOD) and impact hypolimnetic oxygen in stratified lakes. We conducted laboratory microcosm experiments and computer simulations with larvae of the burrowing benthic midge Chironomus plumosusto quantify burrow oxygen uptake rates and subsequent contribution to sediment oxygen demand in central Lake Erie. Burrow oxygen uptake and water flow velocities through burrows were measured using oxygen microelectrodes and hot film anemometry, respectively. Burrow oxygen consumption averaged 2.66 × 10− 10 (SE = ± 7.82 × 10− 11) mol O2/burrow/s at 24 °C and 9.64 × 10− 10 (SE = ± 4.86 × 10− 10) mol O2/burrow/s at 15 °C. In sealed microcosm experiments, larvae increased SOD 500% at 24 °C (density = 1508/m2) and 375% at 15 °C (density = 864/m2). To further evaluate effects of densities of C. plumosus burrows on SOD we developed a 3-D transport reaction model of the process. Using experimental data and chironomid abundance data in faunal surveys in 2009 and 2010, we estimated that bioirrigation by a population of 140 larvae/m2 could account for between 2.54 × 10− 11 mol/L/s (model results) and 5.58 × 10− 11 mol/L/s (experimental results) of the average 4.22 × 10− 11 mol/L/s oxygen depletion rate between 1970 and 2003, which could have accounted for 60–132% of the oxygen decline. At present, it appears that the population density of this species may be an important factor in development of hypoxic or anoxic conditions in central Lake Erie.

    Contribution #1923
  • David M. Warner and Barry M. Lesht 2015 Relative importance of phosphorus, invasive mussels and climate for patterns in chlorophyll a and primary production in Lakes Michigan and Huron. John Wiley & Sons . Freshwater Biology 60 (5). pp. 1029-1043.
    1. Lakes Michigan and Huron, which are undergoing oligotrophication after reduction of phosphorus loading, invasion by dreissenid mussels and variation in climate, provide an opportunity to conduct large-scale evaluation of the relative importance of these changes for lake productivity. We used remote sensing, field data and an information-theoretic approach to identify factors that showed statistical relationships with observed changes in chlorophyll a (chla) and primary production (PP).

    2. Spring phosphorus (TP), annual mean chla and PP have all declined significantly in both lakes since the late 1990s. Additionally, monthly mean values of chla have decreased in many but not all months, indicating altered seasonal patterns. The most striking change has been the decrease in chla concentration during the spring bloom.

    3. Mean chlorophyll a concentration was 17% higher in Lake Michigan than in Lake Huron, and total production for 2008 in Lake Michigan (9.5 tg year−1) was 10% greater than in Lake Huron (7.8 tg year−1), even though Lake Michigan is slightly smaller (by 3%) than Lake Huron. Differences between the lakes in the early 1970s evidently persisted to 2008.

    4. Invasive mussels influenced temporal trends in spring chla and annual primary production. However, TP had a greater effect on chla and primary production than did the mussels, and TP varied independently from them. Two climatic variables (precipitation and air temperature in the basins) influenced annual chla and annual PP, while the extent of ice cover influenced TP but not chla or primary production. Our results demonstrate that observed temporal patterns in chla and PP are the result of complex interactions of P, climate and invasive mussels.

     

    Contribution #1922
  • Michael J. Sayers, Amanda G. Grimm, Robert A. Shuchman, Andrew M. Deines, David B. Bunnell, Zachary B. Raymer, Mark W. Rogers, Whitney Woelmer, David H. Bennion, Colin N. Brooks, Matthew A. Whitley, David M. Warner, and Justin Mychek-Londer 2015 A new method to generate a high-resolution global distribution map of lake chlorophyll. Taylor & Francis . International Journal of Remote Sensing 36 (7). pp. 1942-1964.

    A new method was developed, evaluated, and applied to generate a global dataset of growing-season chlorophyll-a (chl) concentrations in 2011 for freshwater lakes. Chl observations from freshwater lakes are valuable for estimating lake productivity as well as assessing the role that these lakes play in carbon budgets. The standard 4 km NASA OceanColor L3 chlorophyll concentration products generated from MODIS and MERIS sensor data are not sufficiently representative of global chl values because these can only resolve larger lakes, which generally have lower chl concentrations than lakes of smaller surface area. Our new methodology utilizes the 300 m-resolution MERIS full-resolution full-swath (FRS) global dataset as input and does not rely on the land mask used to generate standard NASA products, which masks many lakes that are otherwise resolvable in MERIS imagery. The new method produced chl concentration values for 78,938 and 1,074 lakes in the northern and southern hemispheres, respectively. The mean chl for lakes visible in the MERIS composite was 19.2 ± 19.2, the median was 13.3, and the interquartile range was 3.90–28.6 mg m−3. The accuracy of the MERIS-derived values was assessed by comparison with temporally near-coincident and globally distributed in situ measurements from the literature (n = 185, RMSE = 9.39, R2 = 0.72). This represents the first global-scale dataset of satellite-derived chl estimates for medium to large lakes.

    Contribution #1920
  • Christopher M. Holbrook, Roger Bergstedt, Noah S. Adams, Tyson W. Hatton, and Robert L. McLaughlin 2015 Fine-Scale Pathways Used By Adult Sea Lampreys during Riverine Spawning Migrations. Taylor & Francis . Transactions of the American Fisheries Society 144 (3). pp. 549-562.

    Better knowledge of upstream migratory patterns of spawning Sea Lampreys Petromyzon marinus, an invasive species in the Great Lakes, is needed to improve trapping for population control and assessment. Although trapping of adult Sea Lampreys provides the basis for estimates of lake-wide abundance that are used to evaluate the Sea Lamprey control program, traps have only been operated at dams due to insufficient knowledge of Sea Lamprey behavior in unobstructed channels. Acoustic telemetry and radiotelemetry were used to obtain movement tracks for 23 Sea Lampreys in 2008 and 18 Sea Lampreys in 2009 at two locations in the Mississagi River, Ontario. Cabled hydrophone arrays provided two-dimensional geographic positions from acoustic transmitters at 3-s intervals; depth-encoded radio tag detections provided depths. Upstream movements occurred at dusk or during the night (2015–0318 hours). Sea Lampreys were closely associated with the river bottom and showed some preference to move near banks in shallow glide habitats, suggesting that bottom-oriented gears could selectively target adult Sea Lampreys in some habitats. However, Sea Lampreys were broadly distributed across the river channel, suggesting that the capture efficiency of nets and traps in open channels would depend heavily on the proportion of the channel width covered. Lack of vertical movements into the water column may have reflected lamprey preference for low water velocities, suggesting that energy conservation was more beneficial for lampreys than was vertical searching in rivers. Improved understanding of Sea Lamprey movement will assist in the development of improved capture strategies for their assessment and control in the Great Lakes.

    Contribution #1918

Pages

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://www.glsc.usgs.gov/publications
Page Contact Information: GLSC Webmaster
Page Last Modified: Thursday August 1, 2013